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Improved Maximum-Likelihood Detection and 
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Abstract-When a wavelet to be estimated is not spiky, then a single 
most likely replacement (SMLR) detector, which is used to detect ran- 
domly located impulsive events that have Gaussian-distributed amplitudes, 
may split a large spike into two smaller ones and may also detect some 
spikes at wrong locations, although these locations are very close to their 
true ones. Presented here are two new detection algorithms, namely a 
single-spike-shift (SSS) detector and an SSS-SMLR detector both of 
which help correct the SMLR detector’s spike-splitting and shifting prob- 
lem. 

I. INTRODUCTION 

Kormylo and Mendel [l] have developed a maximum-likeli- 
hood detector that produces locally optimal estimates. Their 
single most likely replacement (SMLR) detector adds or removes 
an event at any single time point in such a way that the likelihood 
function always decreases. The SMLR detector has been found to 
be very useful in reflection seismology, where the problem of 
pulse overlap can become extremely severe. Although the SMLR 
detector works well for various wavelets (i.e., channel impulse 
responses), we have found that it sometimes splits a large spike 
into smaller ones. Additionally, it sometimes detects spikes at 
incorrect locations, although these locations are very close to the 
correct ones. These cases often occur when the wavelet is not 
spiky (i.e., not broad-band). 

In this correspondence, we present new detectors which can 
help to resolve overlapping nonspiky wavelets, and can increase 
the accuracy of spike detection. 

In Section II we review the background of maximum-likelihood 
detection and estimation for Bernoulli-Gaussian processes. In 

Manuscript received March 15, 1983; revised June 13, 1983. This work was 
performed at the University of Southern California, Los Angeles, and sup- 
ported in part under NSF Grant ECS-8200882 and in part under the support 
of the sponsors of the USC Geo-Signal Processing Program. 

C. Y. Chi was with the Department of Electrical Engineering, University of 
Southern California, Los Angeles, CA 90089; he is now with the Jet Propulsion 
Laboratory, California Institute of Technology, Pasadena, CA 91109. 

J. M. Mendel is with the Department of Electrical Engineering, University of 
Southern California, Los Angeles, CA 90089-0781. 

Section III we derive a single-spike-shift (SSS) detection algo- 
rithm. In Section IV we describe an SSS-SMLR detector that is a 
combination of the SSS and SMLR detectors. Computer simu- 
lations are presented in Section V which demonstrate that our 
SSS detector can help to improve the results obtained from the 
SMLR detector, and vice versa, and that the SSS-SMLR detector 
outperforms both the SMLR and SSS detectors. 

II. BACKGROUND 

As in Kormylo and Mendel [l], we begin with the discrete-time 
convolutional model 

z(k) = t V(k - i)p(i) + n(k), (1) 
r=l 

where z(k) is observed data, V(k) is the pulse wavelet, p(k) is 
the impulse signal to be estimated, and n(k) is observation noise. 
We assume that the data is to be processed off-line after N 
samples of z(k) have been obtained. In (1) wavelet V(k) is 
modeled as an n th-order autoregressive moving average (ARMA) 
with transfer function 

i pjz-i+l 

v(z) = ;=l n (2) 
1 - c oLiz-l 

i=l 

Our detectors are based on Kalman filter/optimal smoother 
techniques; thus, we also need to express the convolutional model 
(1) in state-variable format as 

x(k) = Qx(k - 1) + y/J(k) 

and 
z(k) = h’x(k) + n(k), 

where @ , y, and h are (known) functions of LYE and p, (e.g., [2]). AS 
in Kormylo and Mendel [l], the sequence p(k) is modeled as a 
zero mean Bernoulli-Gaussian sequence, one which can be ex- 
pressed as the product model p(k) = r( k)q( k), where r(k) is 
white Gaussian noise with variance C, and q(k) is a Bernoulli 
sequence for which 

q(k) = 0, 
q(k) = 1. 

The observation noise n(k) is assumed to be white and Gaussian 
with variance R , and the sequences r(k) and q(k) are assumed to 
be independent. 

Event detection consists of finding maximum-likelihood esti- 
mates 4(k) of q(k), k  = 1,2, . . , N, and amplitude estimation 
consists of finding maximum-likelihood estimates P(k), of r(k), 
k  = 1,2;.., N. 

As in Kormylo and Mendel [l], we shall find it convenient 
during the derivation of our detectors, to express convolutional 
model (1) in matrix form as z = VP + n, where z = 
col[z(l), G’), . . . , z(N)], 

r v(0) 0 . . . 0 1 
V(l) v= . 

I . 

v(0) 

V(N’- 1) V(N’- 2) ..: V&) 

P = co1 [PO), p(2), . . . , p(N)], 
and n = col[n(l), n(2), . . , II(N)]. From the product model we 
see that E{ p2(k)/q(k)} = Cq2(k) = Cq(k); hence, the condi- 
tional covariance matrix for z is given by 

E{zz’lq} p 8, = VQqV’ + RZ (3) 

OOlS-9448/84/0300-0429$01.00 01984 IEEE 
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where q = co1 [q(l), q(2), . . . , q(N)], and 

E{pp’lq} p Qq= diag(Cq2(1),Cq2(2);..,Cq2(N)) 

= Cdiag(q(l), q(2), ... , q(N)). 
The SMLR detector, developed in [l], is an iterative search 

algorithm that compares the likelihood of a “reference” sequence 
qr to a limited number of different “test” sequences qr in each 
iteration. The SMLR detector was derived by assuming that qr 
differs from qr at only one location, so that there are then only N 
possible. test sequences for a given reference sequence. The log- 
likelihood-ratio decision rule for choosing qr and qt is given by- 

21n A,,(k) = 21n P(Zl%) prtqt) 
Ptzlqr)Prtqr) 

( v’,o,1z)2 
= c-‘[qt(k) - q,(k)]-l + U$2;lVk 

-In { 1 + 4K1G[qt(k) - dk)l} 
+2[q,(k)-y,(k)]ln(~)~O, (4) 4, 

which is (33) in [l], where qt is the sequence 

q,(i) = 
q,(i), foralli # k, 

1 - q,(i), i = k, (5) 

uk is the kth column of matrix V, and, 9, = QJqzqr. 
Let k’ be associated with the maximum value of In A(k) A 

In A,,(k) (k = 1,2,. . . , N). Then the single most likely replace- 
ment test sequence is 

q;(i) = 
r 

di)y for all i # k’, 

1 - q,(i), i = k’. 

It is also true that the log-likelihood function evaluated for q; is 
at least as large as its value evaluated for qr. 

As pointed out by Kormylo and Mendel [l], the SMLR search 
algorithm, initiated by q, = tj”), computes N log-likelihood ratios 
corresponding to N different qt sequences. The most likely q, 
sequence is used as the reference sequence q(l) for the next 
iteration. If, after i iterations, we obtain a reference q, = cjci) 
which is more likely than any of the corresponding qt sequences, 
then the search stops and 4 = q(l) is the final detected event 
sequence. 

After SMLR detection is completed, amplitude estimates of the 
detected spikes can be obtained by using 4 in the covariance 
model of an optimal smoother. Doing this, we obtain i(klN), 
and subsequently P(klN) = G(k)P(klN). 

III. SINGLE-SPIKE-SHIFT(SSS)DETECTION 

The SMLR detector is derived by assuming that q1 and q, 
differ in just one location. In order to detect a better q sequence, 
i.e., one with a higher likelihood function than that obtained by 
the SMLR detector, we shall derive a detector that computes the 
likelihood ratio of q, and q, when qt and q,. differ at exactly two 
locations. 

The total number of different q sequences obtained from qr by 
changing any two location is N(N - 1)/2, which can be a very 
large number. We shall only consider the special case where ql 
and qr differ at two consecuiive locations. The SSS detector 
restr$s q1 to be generated from q,. by shifting only at those k where 
there is a spike in q,, Such spikes are shifted one location forwards 
or backwards. 
’ Let C0 be the class of all possible test sequences generated by 
shiftings a’ spike in qr forward or backward one location. We 
define a “‘bunch of spikes” as a set of consecutive spikes; thus, a 
bunch of spikes includes at least two consecutive spikes. We call 

t 
q,(i) 

I- 

. . . . . 

0 I 2 3 4 5 6 7 N ‘j 
-.- 

f 

A 
I 1 
' : 

SAME ’ SHIFT, 
' \ 

‘SHIFT P 

II 

BACKWARDS, ‘,FORWARDS SAME 
, \ I \ II 

Fig. 1. &ample of q, E Cl. 

a spike at k = kj an “isolated spike” if q(ki) = 1 and q(ki - 1) 
= q( ki + 1) = 0. Assume that qr includes L isolated spikes and 
G bunches of spikes and that the i th bunch has gi consecutive 
spikes for i= 1,2;.. , G. Let the L isolated spikes in qr be 
located at k 7 k,, k,, . . . , kL and the ith bunch contain spikes 
located at k = Ii through Ii + gi - 1 for 1 5 i 5’ G; i.e., 

i 

1, forallj=k,, 1=1,2;..,L, and 
4Aj) = 1,1j1I,+g,-l,i=1,2;..,G, 

0, otherwise. 
The class Co can be expressed as two mutually exclusive sub- 
classes, Ci and C,. Subclass Ci includes those test sequences in 
which a change from qr to qt occurs at just one location, 

Cl = {qrlqr(j) = a(j), for dlj + k, a(j) = 1 - dj) 
forj=k,kE DI} 

where 
D,={klli~k~fi+gi-1,1~i5G}. 

Subclass C, includes all test sequences which are obtained by 
shifting a spike within any bunch in qr one location forwards or 
backwards. For example, assume that I, = 3 and g, = 4, i.e.; the 
first bunch in q,. is located at k = 3 through k = 6. Fig. 1 depicts 
this first bunch of q,. A test sequence q, obtained by shifting the 
spike at k = 5 one location forwards or backwards is depicted in 
Fig. 1. Obviously, for k = 5, q, is a member of Ci. Note that end 
points k = ti and Ii + gi - 1 are included in D, when these 
spikes are shifted into the bunch. 

Subclass C, .includes .those test sequences in which a change 
from qr to qt occurs at ‘two locations, 

G = {qtlqt(j) = k(j) fordlj + k, k + 1, a(j) = 1 - s,(j) . 
forj = k, k + 1, k E D2} 

where 
D,={k]k=k,,k,-lforall1111L; 

ork=li-I,li+gj’-1 foralllIiIG}. 

Note that endpoints k = I,_, and 1, + g, - 1 are included in D2 
when these spikes are shifted outside the bunch. 

The total number of elements, in C, and C,, Mi and M2, 
respectively are 

and 
i=l 

M2 = 2L f 2G. 
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Fig. 2. SSS search algorithm. 

For notational simplicity, we,let In Ar( k) denote the log-likeli- and 
hood ratios when qt E Cl and In A,(k) denote the log-likelihood 
ratios when q, E C,. ,Observe that In A,(k) can be computed b, A u’,O;~V,+~. (11) 
using (4) for all k E D,. On the other hand, ln A,(k) must be 
computed using (7) stated in the following theorem for all k E D,. 

Q uantities fk, ak, and b, can be computed by running the 
following time-varying backwards state equation which is driven 

Theorem: Assume that q1 and 4, differ at two consecutive by the innovations process, Z( kJk - 1) that is obtained from a 
locations, i.e., Kalman filter: 

q,(i), foralli#kandk+l, ,.. r( klN) = (a,( k)r( k  + l]N) + hq-‘(k)Z(klk - 11, (12) 
q,(i) = 

1 - q,(i), i=kandk+l. 

For this case 

2ln A,,(k) = 5 [dkfi% + Cdk+l++d 

+4+lfk2+1(1 + Wad 
-WA+~hf~f~+~] - *n I4 
+2(dk + dk+i)ln & ( 1 

(6) wherek=N,N-l;..,l,;(N+l]N)=O, 
Qb(k)  = [I - K(k)h’]‘W, (13) 

K(k) is the Kalman gain and q(k) is the variance of Z(klk - 1). 
The cdvariance matrix of r( klN), S( kJN), satisfies the back- 
wards-recursive equation 

where 

1 + Cdkak Cdk+lbi = 
cd, b/c 1 1 + Cdk+lak+l ’ 

fk Ji d&-t, 
ak ’ dkfdrpbk) 

S(klN) = ‘&(k)S(k + l]N)@i(k) +hq-‘(k)h’ (14) 

wherek=N,N-I,.,. 
(7) 

,l, and S(N + l]N) = [O]. Fromr(k]N) 
and S(klN), we compute fk, ak, and bk as 

fk = Yr(klN) (15) 

ak = y’S(W)y (16) 

and 

(8) b, = y’Qb(  k)S( k  + l]N)y. (17) 

(9) The proof of this theorem is given in the Appendix. 
Let k’ be associated with the maximum value of In A,(k) 

(10) (k E Dl) and In A,(j) (j E D2). Then the single-spike-shift test 
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COMPUTE 
2&‘2(ki) 
LL i=1,2,“‘,M2 
and kiE D2 

Fig. 3. SSS-SMLR search algorithm. 

sequence is IV. SSS-SMLR DETECTOR 

q;(i) = 
q,(i), foralli # k’, 

1 - q,(i), i = k’, (18) 

if k’ E D,, or 

q;(i) = 
q,(i), foralli# k’andk’+ 1, 
1 - q,(i), i = k’ and k’ + 1, (19) 

if k’ E D,. It is also true that the log-likelihood function evaluated 
for q; is at least as large as its value evaluated for qr. 

Beginning with some initial reference qr = Q(O), the SSS search 
algorithm computes Jt4i log-likelihood ratios In h,(k) (for all 
k E Dl), using (4), and M2 log-likelihood ratios In A,(k) (for all 
k E D2), using (7) (see Fig. 2). The most likely qt sequence is 
used as the reference sequence q *(l) for the next iteration. If, after 
i iterations we obtain a reference qr = tj(‘) which is more likely 
than any of the corresponding qr sequences, then the reference 
sequence no longer changes so the search stops and 4 = q(l) is the 
final detected event sequence. If Q(O) is chosen to be iSMLR, which 
is obtained from the SMLR detector, then the likelihood function 
of 4(i) is surely larger than that of isMLR when 4(‘) + esMLR for 
alli 2 1. 

In summary, the SSS detector is an iterative search algorithm 
that either shifts a spike forwards or backwards one location per 
iteration. It is suboptimal in that it may converge to some locally 
optimal sequence. The keys to this detector are the two expres- 
sions which allow us to compute (Mi + Mz) different log-likeli- 
hood ratios using only one optimal smoother (i.e., about two 
Kalman filters). The ‘numbers Mi and M2 usually vary from 
iteration to iteration. 

After SSS detection is completed, amplitude estimation of the 
detected spikes can be obtained by using 4 as described at the 
end of Section II. 

Once ak, b,, fk are computed, we can calculate the log-likeli- 
hood ratios 21n A(k) (for all k = 1,2, . . . , N), 21n AI (for 
all i=1,2;..,M,, and kiEDI) and 2lnA,(l,) (for all i= 
1,2, . . . , M2 and I, E D2). Doing this leads to another detector 
which updates a reference sequence qr by choosing a test se- 
quence that has the largest positive log-likelihood ratio among all 
computed log-likelihood ratios 2 In A(k), 2 In A,(k), and 
2 In A,(k). We call this detector an SSS-SMLR detector. Be- 
cause {21nA,(k,), for all i = 1,2;.., MI and k, E Dl} are 
includedin (21n A(k), for all k = 1,2, ... , N}, we candrop the 
calculations of the former terms from the SSS-SMLR detection 
algorithm. 

At each iteration, assume that q; is the q sequence that is 
associated with the largest log-likelihood ratio 21n A’(k). The 
SSS-SMLR detector either changes a spike location [i.e., q; is 
obtained from (5), and 2 In A’(k) E (2 In A(k), k = 
1,2, . . , N}] or shifts a spike one location forwards or back- 
wards [i.e., q: is obtained from (6), and, 2 In A’(k) E (2 In A’z (k,), 
i = 1,2;.., M2, k, E D2}] until all computed log-likelihood 
ratios are less than zero, at which point a locally optimal spike 
sequence, 4, has been reached. 

Fig. 3 depicts the SSS-SMLR search algorithm. When q; is 
obtained from (5), then the total number of spikes will be either 
m’ = m + 1 or m’ = m I - 1, whereas when q; is obtained from 
(6), or rm; = m,. fThus,r the total number of spikes at every 
iteration may or may not be changed. 

After SSS-SMLR detection is completed, amplitude estimates 
of the detected spikes can be obtained by using 4 as described at 
the end of Section II. 

V. COMPUTERSIMULATIONS 

We have run many computer simulations and have observed 
that spike splitting and spike shifting occur often when the 
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Fig. 4. Bernoulli-Gaussian sequence. 
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Fig. 5. Fourth-order ARhL4 wavelet. 

SMLR detector is used, and the wavelet is not broad-band, and, 
that both the SSS and SSS-SMLR detectors can help to improve 
the detection results obtained by the SMLR detector. Our results 
in this section are representative of all our simulations. 

As an example, we consider a synthetic signal designed to fit 
our modeling assumptions. Using a pseudorandom number gen- 
erator, we generated the Bernoulli-Gaussian sequence p(k) for 
which A = 0.05, N = 300, and m = 18, shown in Fig. 4. This 
signal was convolved with a fourth-order ARMA wavelet, shown 
in Fig. 5, to which white noise is added to produce the synthetic 
data shown in Fig. 6. 

A threshold detector [2], [3] was used to obtain a starting q 
sequence for both the SMLR and SSS-SMLR detectors. We then 
studied the three schemes depicted in Fig. 7. We denote the 
output of scheme 1 as j&(k), the outputs of scheme 2 as &(k) 
and Fz2( k), and the output of scheme 3 as j&(k). Note that each 
output is an estimate of the input p(k). 

In Figs. 8 through 11, circles depict the true impulse signal 
p(k) and bars depict the outputs F,(k), j&(k), bz2(k), P3(k), 
respectively. Observing j&(k) in Fig. 8, we see that the SMLR 
detector splits the first true spike (i.e., the first circle) into two 
smaller spikes, detects five true spikes (namely, the 6th, 8th, 9th, 
14th, and 16th) but shifts them from their true locations, and 
gives rise to two false alarms. In Fig. 9, which depicts bzl( k), we 
see that the SSS detector recovers the first spike, detects the 8th 
and 9th true spikes, and gives rise to only one false alarm. Only 
three detected spikes in pzl( k) are shifted from their true loca- 
tions the 6th, 14th, and 16th. In Fig. 10, which depicts fiz2( k), we 
see that the cascaded SSS and SMLR detectors eliminate false 
alarms; but the 6th, 14th, and 16th detected spikes still remain 
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Fig. 6. Synthetic data (signal-to-noise ratio of 25). 

shifted. In Fig. 11, which depicts j13(k), we see that the 
SSS-SMLR detector has shifted the 6th spike to its correct 
location, and only the 14th and 16th detected spikes remain 
shifted from their true locations. 

From these results, we see the SSS detector can improve SMLR 
detector results, vice versa when they are cascaded together, and 
the SSS-SMLR works well. Another experiment was performed 
in which we used j&(k) as the starting sequence for a second 
cascade of SSS and SMLR detectors. We were able to improve 
jlZ2(k), and, in fact we obtained the same sequence as j&(k). 
Doing this again, we did not improve our results. Apparently, 
j&(k) is a locally optimal estimate of p(k) and neither the SSS- 
or SMLR-detectors can find another 4 sequence such that 4 has a 
higher likelihood function than & associated with &(k). 

Finally, observe from Figs. 8 through 11, that better spike 
location information results in much better estimates of ampli- 
tudes. 

VI. DISCUSSION AND CONCLUSION 

When a wavelet is not spiky then an SMLR detector may split 
a large spike into two smaller ones and detect some spikes at 
wrong locations, although the detected locations are very close to 
their true locations. 

We have derived an SSS detector which is based on a maxi- 
mum-likelihood criterion. Its derivative is very similar to that of 
the SMLR detector. The SSS detector can help to correct the 
SMLR detector’s spike-splitting and spike shifting problems. All 
quantities needed to implement the SSS detector can be obtained 
from one optimal smoother. We also developed an SSS-SMLR 
detector, which is a combination of SSS and SMLR detectors. 

The SSS and SSS-SMLR detection algorithms are iterative. At 
every iteration they increase the likelihood function p (z 1 q) Pr (q) 
until a local maximum of p(zlq) Pr(q) is reached, i.e., they 
converge to a local maximum of p (z 14) Pr (q); they are, therefore, 
suboptimal. Our algorithms do guarantee that a local maximum 
of the likelihood function can be found and that this value will be 
larger than that obtained by the SMLR detector. Their perfor- 
mance depends on signal-to-noise ratio and bandwidth of the 
wavelet. Quantitative relationships between their performance 
and signal-to-noise ratio and bandwidth of the wavelet remain to 
be developed. 

In [8] Kwakernaak computed the likelihood function using 
results that are familiar from matched filtering. Some approxima- 
tions were made by him. In this correspondence (and [l]), instead 
of computing the likelihood function, the SSS-SMLR detector, 
for example, computes (N + M2) log-likelihood ratios. To do 
this, we run an optimal smoother once, but do not make any 
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Fig. 7. Simulation schemes. 
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Fig. 9. Output j&,(k) from scheme 2. 

approximations. In other words, we compute N + M2 likelihood 
functions by running an optimal smoother once instead of using 
matched filtering approaches N + M2 times. This leads to a great 
economy in the numerical effort. We then estimate spike ampli- 
tudes after detection is completed. The computational load for 
estimating detected spike amplitudes is equivalent to that for one 
iteration of detection; thus, amplitude estimation is not computa- 
tionally burdensome. 

Our computer simulations demonstrated that the SSS and 
SSS-SMLR detectors work quite well; that the SSS detector ‘can 
help to improve the results obtained from the SMLR detector 
and vice versa; and, that the SSS-SMLR detector outperforms 
both the SMLR and SSS detectors. 

SSS-SMLR * ESTIMATES 

SSS AND SMLR ESTIMATES 
0.200 l,..I..I.II,*...,,..,,,,,,,,,‘,,r,,,,r,,,,,,,,,, 
0.150 P  P  

O.OOOE+OO 200. 400. 600. 800. O.lOOE104 
MSECS 

Fig. 11. Output G3(k) from scheme 3. 

APPENDIX 

Proof of the Theorem 

When q is given, then z is Gaussian; hence, 

P(Zl9) = 
1 

(2a) N’21Q2q1i/* exp i 
-$z’L?;‘z . 

) (Al) 

Because the q(k) are independently distributed, we see from (6) 
that 

Pr(q) = kfi1 Pr(q(k)) = Amq(l - h)Npmy W) 
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where m4 is the number of nonzero events in q, i.e., 

mq = kglw~ 

Let U be a unitary matrix such that 

(A3) 

u’(Q, - Q,)U = [ k$!+!!], (A4) 

where Q , = Q tl4=4,, Q , = Q414=4r ad (Q,, - Q ,> is diagonal 
and invertible. Additionally, let VU = [Vi j V,]. 

Kormylo and Mendel [l], [2] proved that the log-likelihood 
ratio for the test sequence qr and the reference qr can be ex- 
pressed as 

2ln A,, = z'f4-'V;(Qt, - Q,) 
.[ Z + V;Q;'V,(Q,, - Q,,)] % ‘fir-$ 

-lnlZ+ v'G'C'V,(Q,, - Q,,)l 
+2(m,- m,)ln & , 

( 1 (A5) 

where m, = m4]4=,r, m, = m41qcq,, 3, = Q24)q=lr, and 8, = 
%l,=w 

When q, is defined as in (6), the matrix Vi in (A5) becomes 

6 = [Uk %+11. 646) 
Let d, p q,(i) - q,(i); thus, 

p(k), given z, is 

P(klN) = Cdk)y’r(WN), (A12) 

ji( klN) = Cq( k)u’,O,‘z, (Al31 
fk = y’r(klN), and uk = y’S(klN)y. We therefore only have to 
demonstrate the truth of (17). 

Evaluate E{b(kjN)fi’(k + l]N)} from (A12) and (A13), re- 
spectively, as 

E{P(W)P’(k + W)) 
= C*q(k)q(k + l)y’E[r(klN)r’(k + l]N)]y. (A14) 

and 

E{ji(klN)@‘(k + 1IN)) = C’q(k)q(k + l)b,. (A15) 

Compare (A14) and (A15), to see that b, = y’E{ r(klN)r’(k + 
l]N)} y where, from (12), 
E{ r( klN)r’( k  + l]N)) 

= @,,(k)S(k + l]N) +hq-‘(k)E{i(klk - l)r’(k + 1IN)). 

6416) 
Observe from (12), that r(k + l]N) is a linear combination of 
Z(k + llk),Z(k+ 2/k+ l);..,i(N]N - 1); thus, 

E{Z(klk - l)r’(k + l]N)} 

= E{i(klk - l)}E{r’(k + l]N)} = 0. (A17) 

We conclude that b, = y’@,(k)S(k + l]N)y. 

m, - m, = f q,(i) - f q,(i) = dk + dk+l (A7) 
i=l i=l ill 
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and 
' q,(k) 0 PI 

_ 
qt(k + 1) 

1 
c 
[ 

0 dk + 1) 

1 
[31 

dk 0 
= ’ 0 dk+l [ 1 [41 

(A@ [5] 

The right-hand side of (A5) can now be computed by substitut- 
ing (A6), (A7), and (A8) into it: 

I61 

2ln A,,(k) = [dkfk dk+lfk+llA-l f i 1 
[71 

isI 
k+l 

-ln]A] + 2(d, + dk+l )ln( A), (A9) 

where matrix A and quantities fk, ak, and bk are defined in (8) 
through (ll), respectively. From (8), we see that 

IAl = (1 + Cdk%)(l + Cdk+lUk+,) - C*d,dk+lb; 

Codes for Zero Spectral Density at Zero Frequency 
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and 
(AlO) Abstract-In pulse-amplitude modulation (PAM) digital transmission 

systems line encoding is used for shaping the spectrum of the encoded 

1 1 + Cdk+,uk+, A-l=IAI 
[ 

-Cdk+lbk 
- Cd, b, 1-b CdkUk 1 

symbol sequence to suit the frequency characteristics of the transmission 
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